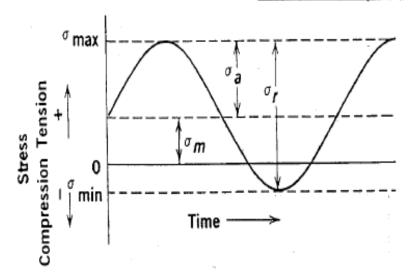
Fatigue of Material Part I

Lecture 6

Fatigue of Materials

- Fatigue is the process by which most materials fail under cyclic loading (~ 80-90%)
- It involves the initiation and evolution of cracks at loads that are too low to cause failure under monotonic loading
- It may occur in implants during normal service
 - heart valves
 - dental implants

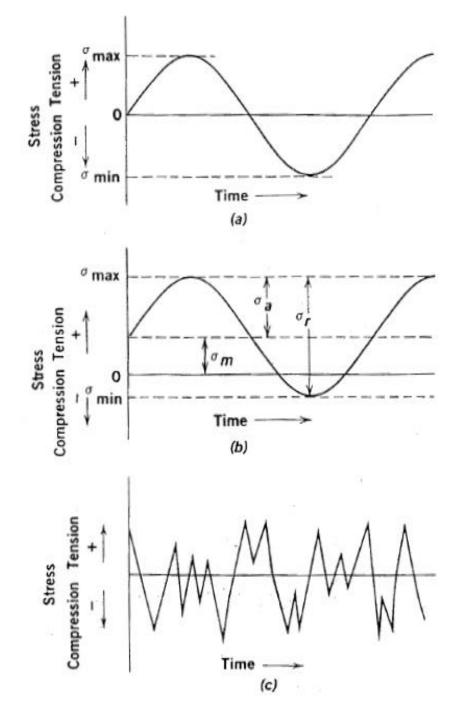
Schematic of Cyclic Loading Profile



$$\sigma_r = \sigma_{\text{max}} - \sigma_{\text{min}}$$
 $\sigma_a = \frac{\sigma_r}{2} = \frac{\sigma_{\text{max}} - \sigma_{\text{min}}}{2}$

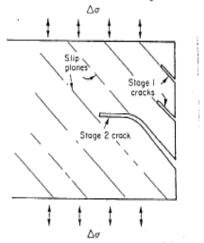
$$\sigma_m = \frac{\sigma_{\text{max}} + \sigma_{\text{min}}}{2} \qquad R = \frac{\sigma_{\text{m}}}{\sigma_{\text{m}}}$$

Fatigue of Material

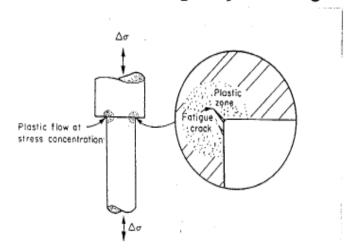


Fatigue Mechanisms

- Two steps: (a) Crack Initiation
 (b) Crack Propagation
- Crack Initiation in Low-Cycle Fatigue:

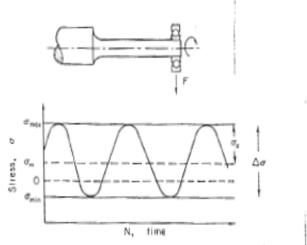


Cracks Initiation in High-Cycle Fatigue:

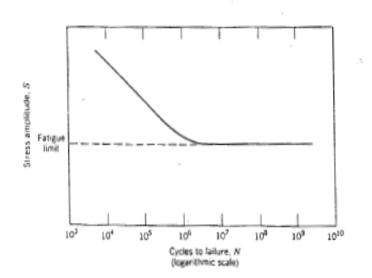


Characterization of Fatigue

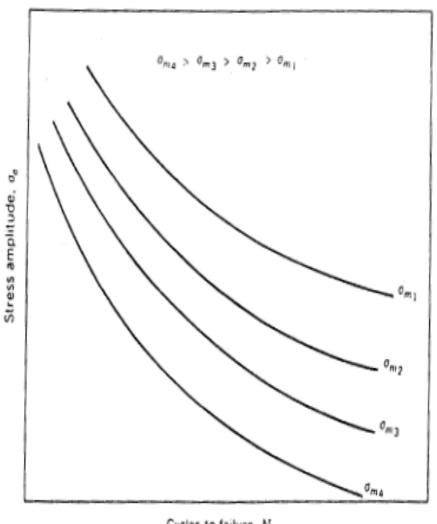
 Types of testing geometries (duplicate in-service loading conditions):



 The Stress Amplitude-Numer of Cycles (S-N) Curve:



Characterization of Fatigue

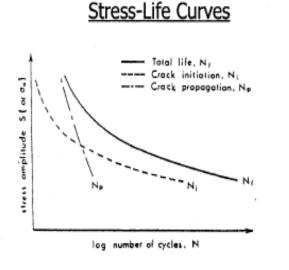


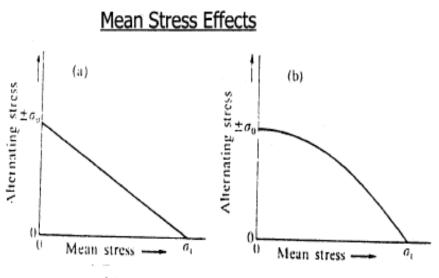
Cycles to failure, N (logarithmic scale)

Demonstration of influence of mean stress σ_m on S-N fatigue behavior.

The Driving Force for Fatigue

- Fatigue is generally controlled by at least two parameters
 - stress range or strain range
 - mean stress or mean strain
- The overall effects of stress or strain range well characterized by stress-life curves
- The effects of mean stress are well characterized by the Goodman line or Gerber parabola

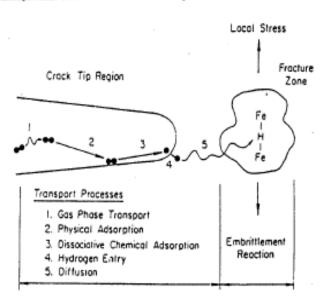




The Factors that Affect Fatigue Life

- Fatigue life is also affected by other parameters
- These include the effects of
 - environment (vacuum, relative humidity, corrosion)
 - surface finish
 - creep and time-dependent phenomena
 - wear under contact fatigue scenarios e.g. in dental implants

Transport and Chemisorption of Water Vapor

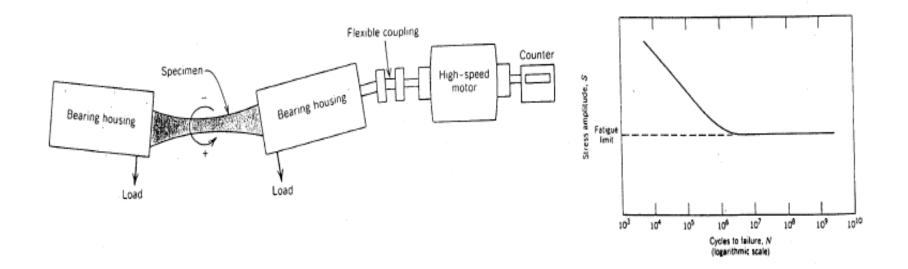


Measurement of Stress-Life Behavior

- The dependence of fatigue life, N_f, on the stress range, ∆S, is often presented on S-N curves
- These were first proposed by Wohler in ~ 1860 and are still used for the characterization of fatigue life
- Some materials exhibit infinite fatigue lives at stresses below the fatigue limit but others do not

Measurement of Stress-Life Behavior

Stress-Life Behavior



The Stages of Fatigue Damage in Materials

In most cases - can divide the total fatigue life into two components

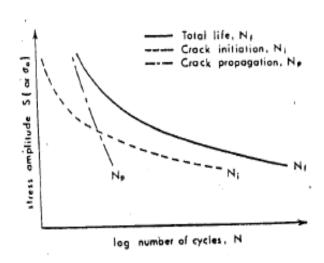
```
- N_i = initiation life

- N_p = propagation life

- N_f = N_i + N_p
```

 Fracture mechanics approach assumes that there are pre-existing cracks hence N_I =0

Schematic of the Components of Fatigue Life



The Fracture Mechanics Approach to Fatigue

- The fracture mechanics approach assumes that there are pre-existing cracks
- The driving force for fatigue crack growth is the stress intensity factor range

$$\Delta K = K_{max} - K_{min}$$

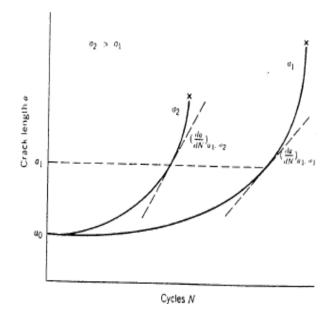
The crack growth rate is also affected by at least one other parameter

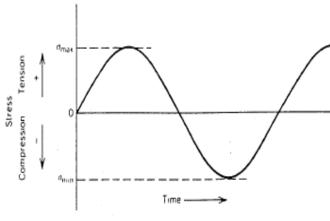
-
$$R = K_{min}/K_{max}$$

$$- K_{\text{mean}} = \frac{K_{\text{max}} + K_{\text{min}}}{2}$$

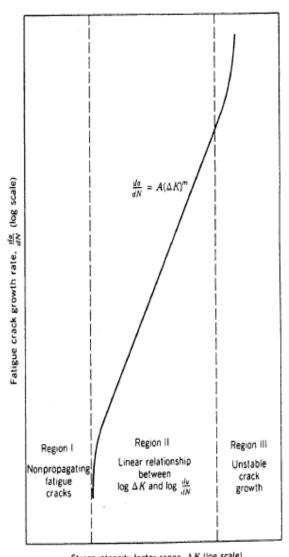
- K_{max}

The Fracture Mechanics Approach to Fatigue





$$\Delta K = K_{max} - K_{min}$$



Stress intensity factor range, ΔK (log scale)

$$\Delta K = Y \Delta \sigma \sqrt{(\pi a)} = Y(\sigma_{\text{max}} - \sigma_{\text{min}}) \sqrt{(\pi a)}$$

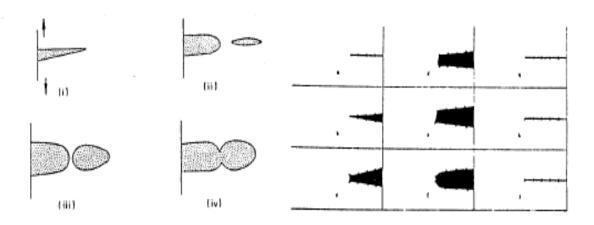
Relationships Between Crack Growth Rates and Crack Driving Forces

 The crack growth rate was first related to crack driving forces by Paris (~ 1956)

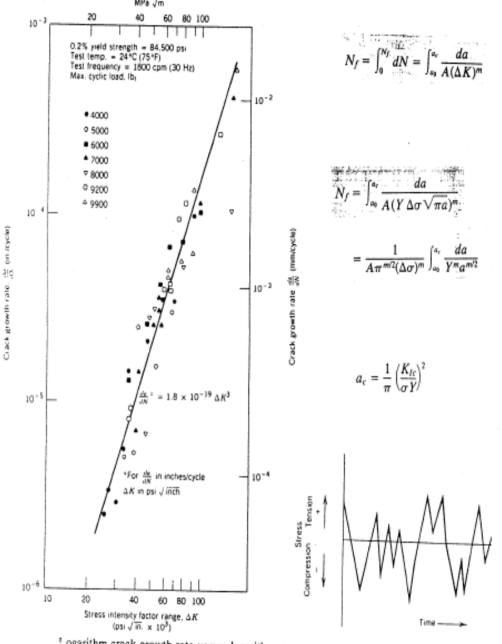
-
$$\frac{da}{dN} = \alpha(\Delta K, K_{max})$$
etc

This was later developed into the so-called Paris law

$$\frac{da}{dN} = A(\Delta K)^m$$



Relationships Between Crack Growth Rates and Crack Driving Forces



Logarithm crack growth rate versus logarithm stress intensity factor range for a Ni-Mo-V steel. (Reprinted by permission of the Society for Experimental Mechanics, Inc.)

Life Prediction within a Fracture Mechanics Framework

- The fracture mechanics approach can account for the effects of pre-existing cracks
- Life prediction can be achieved by the separation of variables and integration between appropriate limits

General Framework

$$\frac{da}{dN} = f(\Delta K, K_{max} \cdots)$$

$$da = f(\Delta K, K_{max} \cdots) dN$$

$$\int_{a_{o}}^{a_{c}} da = \int_{o}^{N_{f}} f(\Delta K, K_{max} \cdots) dN$$

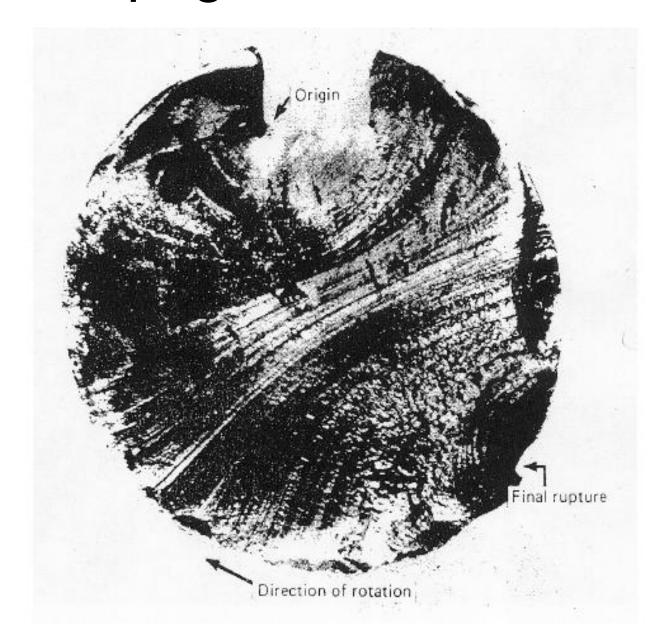
<u>Example</u>

$$\frac{\mathrm{d}a}{\mathrm{d}N} = A(\Delta K)^{\mathrm{m}}$$

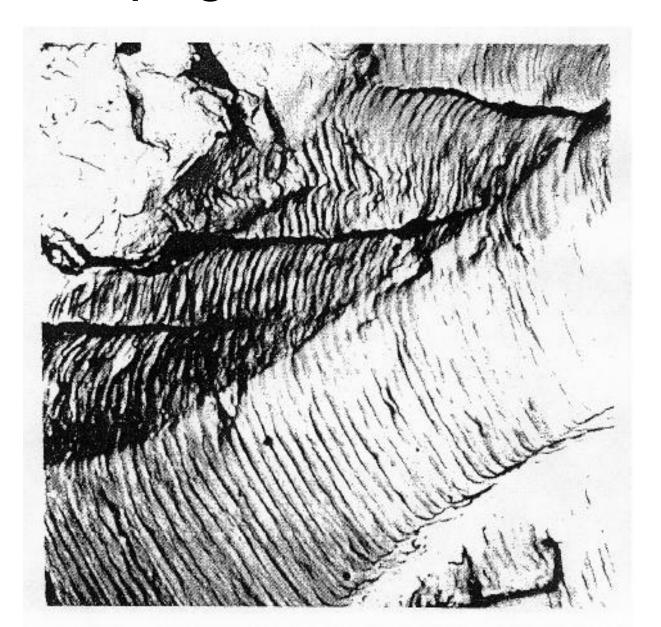
$$da = A(\Delta K)^m dN$$

$$\int_{a_0}^{a_c} da = \int_{0}^{N_f} A(\Delta K)^m dN$$

Propagation of Failure



Propagation of Failure

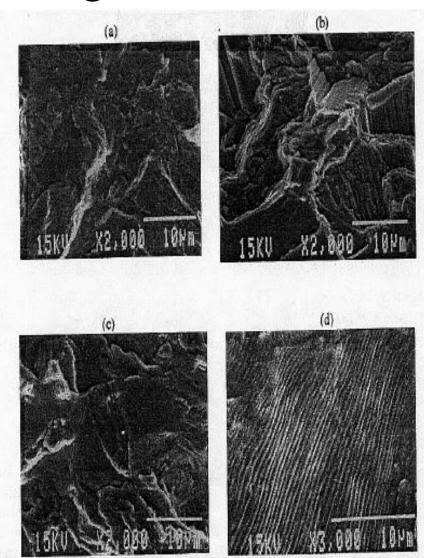


Mechanisms of Fatigue Crack Grwoth

- The diagnosis of fatigue requires an understanding of how to interpret fracture modes
- The fracture modes change with ∆K and K_{max}
- In general, the mechanisms vary from low ΔK, mid ΔK and high ΔK
 - low ∆K (usually crystallographic)
 - mid ∆K (striations)
 - high ∆K striation + dimples

Mechanisms of Fatigue Crack Growth

In Regimes ABC



Dependence of fatigue fracture modes on crack length, a, and stress intensity factor range, ΔK (at R=0.1): (a) $a\approx 50$ µm, $\Delta K\approx 4.5$ MPa m^{1/2}; (b) $a\approx 250$ µm, $\Delta K\approx 15.8$ MPa m^{1/2}; (c) $a\approx 750$ µm, $\Delta K\approx 25.1$ MPa m^{1/2}; and (d) $a\approx 1.6$ mm, $\Delta K\approx 34.8$ MPa m^{1/2}. The crack has grown from left to right in all the figures.

Crack Growth From Posteromedial Corner

Fatigue Striations on Surface of Lateral Crack

